Chordality of locally semicomplete and weakly quasi-transitive digraphs
نویسندگان
چکیده
Chordal graphs are important in the structural and algorithmic graph theory. A digraph analogue of chordal was introduced by Haskin Rose 1973 but has not been subject active studies until recently when a characterization semicomplete digraphs terms forbidden subdigraphs found Meister Telle. Locally digraphs, quasi-transitive extended amongst most popular generalizations digraphs. We extend subdigraph to locally introduce new class called weakly which contains symmetric is incomparable show that can be recursively constructed simple substitutions from transitive oriented graphs, This recursive construction similar one for demonstrates naturalness class. As by-product, we prove same The generalizes only recent results on also classical graphs.
منابع مشابه
Minimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs
For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H , the minimum cost homomorphism problem for H , denoted MinHOM(H), can be formulated as follows: Given an input di...
متن کاملMinimum cost homomorphisms to locally semicomplete digraphs and quasi-transitive digraphs
For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), can be formulated as follows: Given an input digra...
متن کاملIndependent transversals of longest paths in locally semicomplete and locally transitive digraphs
We present several results concerning the Laborde-Payan-Xuang conjecture stating that in every digraph there exists an independent set of vertices intersecting every longest path. The digraphs we consider are defined in terms of local semicompleteness and local transitivity. We also look at oriented graphs for which the length of a longest path does not exceed 4.
متن کاملA classification of arc-locally semicomplete digraphs
Tournaments are without doubt the best studied class of directed graphs [3, 6]. The generalizations of tournaments arise in order to extend the well-known results on tournaments to more general classes of directed graphs. Moreover, the knowledge about generalizations of tournaments has allowed to deepen our understanding of tournaments themselves. The semicomplete digraphs, the semicomplete mul...
متن کاملA classification of locally semicomplete digraphs
In [19] Huang gave a characterization of local tournaments. His characterization involves arc-reversals and therefore may not be easily used to solve other structural problems on locally semicomplete digraphs (where one deals with a fixed locally semicomplete digraph). In this paper we derive a classification of locally semicomplete digraphs which is very useful for studying structural properti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2021.112362